스마트 공장에서 머신비전의 중요성 ㈜트윔 연구소장 김재현 전무
최교식 2021-01-19 16:13:57

 

 

 

2011년부터 화두가 된 Industry 4.0 & Smart Factory.

이 두 단어가 화두가 된지 벌써 10년이 넘었지만, 과연 국내는 얼마나 많은 공정이 스마트 팩토리를 실현하고 있을까? 많은 전문가들이 스마트팩토리와 Industry 4.0에 대한 장점과 필요성을 연설하였지만, “홍수처럼 쏟아지는 정보 속에서 내가 원하는 정보만을 골라볼 수 있는 없을까?”라는 궁금증으로 시작된 스마트공장에서 머신비전의 중요성을 논하고자 한다.

 

스마트 팩토리 정의

 

21세기에 들어서면서 제품의 라이프사이클이 단축되고 소비자들의 니즈가 다양화되면서 맞춤형 생산이 요구되고 있다. 경제 구조는 제조업에서 정보통신기술(ICT)을 포함한 서비스업 중심으로 옮겨가면서 전통적인 제조업은 혁신이 요구되기 시작했으며 이로 인해 스마트 팩토리가 등장했다.

스마트 공장은 제품의 기획부터 설계, 생산, 유통 및 판매까지 전 생산과정을 정보통신기술(ICT)로 통합해 최소의 비용과 시간으로 고객 맞춤형 제품을 생산하는 첨단 지능형 공장을 의미한다. 스마트 공장은 인공지능, 빅데이터, 사물인터넷(IoT), 무선통신 등의 기술로 데이터를 연결·수집·분석하는 유연하고 지능적인 공장이며 컴퓨터와 로봇과 같은 장비를 이용해 생산 과정의 무인화 및 자동화를 추구하는 공장 자동화와 구분된다.

 

스마트 팩토리 구축

 

스마트 공장은 제조 분야별로 그 특성과 운영 방법이 다르기 때문에 기업은 기업의 고유 가치를 잘 반영할 수 있는 방향으로 스마트 공장 구축 방안을 단계별로 수립하고 도입하여야 한다. 스마트 공장을 구축하는데 필요한 여러 분야 중에서 제조공정의 자동화는 아직까지 해결해야 할 일이 많다. 제조공정 및 물류 부문 등에서 기존 컴퓨터와 로봇을 이용해 무인화 및 자동화를 추구하기에는 정형화 하기 어려운 부분이 여전히 남아있어 사람이 처리하고 있다. 이러한 부분을 자동화 할 수 있는 비정형 자동화 기술의 발전이 이루어져야 궁극적인 스마트 공장의 완성에 다가갈 수 있다.

 

스마트 팩토리에서의 머신비전

 

머신비전은 제조 공정에서 카메라, 광학계, 이미지를 처리하고 분석하는 소프트웨어 등으로 구성된 시스템을 통하여 사람이 눈으로 보고 판단하는 작업을 빠르고 정밀하게 대신 해주는 솔루션이다. 즉 머신비전은 컴퓨터가 마치 사람이 사물을 인지하고 판단하는 것처럼 도와주는 기술로서 최근에는 기존 머신 비전에 발전된 광학시스템, 인공지능 및 빅데이터 등의 첨단 기술이 융합되면서 더 정확한 품질 검사가 가능해졌고 제조 효율성을 높일 수 있게 되었다. 전통적인 비전 검사에서는 엔지니어들이 발생할 수 있는 수많은 변화(결함의 크기, 유형, 위치 등)에 대처할 수 있는 검사 조건을 일일이 직접 프로그래밍해야하기 때문에 전문가의 도움과 많은 시간이 필요하다.

 

머신비전에서의 딥러닝

 

규칙 기반의 머신비전 기술이 발전하여 인공지능 기반의 머신비전 기술이 등장하였다. 이러한 기술에는 머신러닝과 머신러닝의 하나의 방법론으로 볼 수 있는 딥러닝 방식이 있다. 머신러닝은 알고리즘을 이용해 데이터를 분석하고 학습한 후에 그 내용을 기반으로 판단이나 예측을 한다. 머신러닝은 사람이 데이터를 분석하는데 참여하는 반면에 딥러닝은 여러 층을 가진 인공신경망을 사용하여 학습을 수행하는 방식으로서 컴퓨터가 자동으로 대규모 데이터에서 중요한 패턴 및 규칙을 학습하고 이를 토대로 의사결정이나 예측을 수행한다. 차세대 검사 방식으로 그 사용 범위가 급속히 확대되고 있는 딥러닝의 성공 요인은 기존 인공신경망의 한계를 극복할 수 있는 알고리즘의 개발과 신경망 학습에 필요한 방대한 양의 학습데이터가 축적 및 인공신경망을 이용한 학습과 계산에 적합한 GPU 발전을 들 수 있다. 딥러닝의 등장으로 인해 머신비전의 실용성은 강화됐고 인공지능의 영역은 확장되었다.

 

인공지능 검사 S/WMOAI?

 

제조 기업에서는 다양한 제품들을 생산하는 과정에서 양품인지 불량품인지 검사하는 과정을 거치게 된다. 최근에는 사람이 일일이 육안으로 검사하는 대신에 머신비전 검사를 통해 많은 기업들의 생산성이 높아졌지만, 일반 비전검사기의 경우 작업 환경이 바뀌고 검사하는 기준 수치들이 바뀔 때마다 장비를 새로 세팅해야 하는 번거로움이 있으며, 다양한 불량 유형이나 비정형 형태의 불량 유형에서 검사의 정확도가 떨어지는 문제점이 발생한다. 트윔(TWiM)의 딥러닝 기반의 비전 검사 소프트웨어인 ‘MOAI’는 이러한 문제를 해결할 수 있는 인공지능 비전 검사용 SW이다.

 

다양한 검사가 가능한 딥러닝 기반의 비전 검사 솔루션 MOAI

 

 

 

MOAI 비전검사는 어떠한 검사 유형도 해결할 수 있도록 크게 3가지 모드로(Object Detection, Segmentation, Classification) 구성되어 있으며, 각 모드에는 산업용 비전 검사에 특화된 자체 개발한 고성능 딥러닝 알고리즘들이 포함되어 있다.

MOAI의 구동 과정은 다음과 같다. 먼저 불량품 이미지를 입력하면 필요에 따라 학습용 데이터를 더 생성하여 결함 유형별로 라벨링을 진행한다. 선택한 모드 및 요구 조건에 따른 학습 단계를 거치면 최적 조건의 딥러닝 모델이 생성된다. 최종 모델이 생성되면 실제 생산라인의 양산품에 대한 검사 이미지를 입력하여 양품인지 불량품인지의 판별과 관련된 정보를 출력하게 된다.

 

MOAI 학습 및 검사 프로세스

 

 

학습을 통하여 검사에 필요한 요구조건을 모두 만족하는 모델이 생성되면 실제 제조 현장에 설치되어 제품 품질 검사를 진행하게 된다. 다음 그림은 파우치 제품에 대하여 학습 후 생성된 모델을 사용한 실제 검사 화면이다. 결함 부분의 사이즈와 위치를 검출하고 유형별로 분류해 사용자에게 보여준다.

 

 

파우치 제품에 대한 MOAI 비전검사 화면

 

 

인공지능 비전검사 MOAI 장점

 

트윔의 MOAI는 비전 전문지식이 없어도 양품과 불량품의 이미지만 있으면 손쉽게 학습시키고 검사할 수 있는 모델을 생성할 수 있다. 불량품이 적을 경우, 자체 개발한 학습용 이미지 자동 증분(Augmentation) 기능 및 불량품 이미지 생성(Generative Model) 알고리즘을 사용하여 많은 양의 학습용 이미지를 생성함으로써 학습 성능을 높일 수 있다.

 

 

학습용 이미지를 생성하는 Generative Model 구성도

 

 

 

하나의 제품에 여러 유형의 불량을 검출할 경우 또는 한가지 불량이어도 단일 조명으로 모든 불량 유형을 검출할 수 있는 조건을 만들어 이미지를 촬영할 수 없는 경우가 발생한다. 이러한 경우에 다양한 조명 조건에서 촬영된 제품 이미지를 하나의 세트로 구성하여 한 번에 학습하는 기능을 제공함으로써 학습시간을 줄이고 검사 성능도 높일 수 있다. 다음 그림은 4가지 조명 조건에 따른 이미지를 하나의 이미지 세트로 구성하여 이미지 간의 상관 관계를 분석하여 학습하고 불량을 검출하는 그림을 나타낸다.

 

 

조명 및 위치 변화에 따른 다수의 이미지 학습 및 분석

 

 

 

일반적으로 딥러닝 모델을 학습하기 위해서는 일정 수준 이상의 양품과 불량품의 이미지가 필요하지만 제품 및 제조 현장의 특성상 불량 제품을 얻는 것이 어려운 경우에 제대로 학습할 수 없는 문제점이 있다. MOAI는 정상 제품의 이미지만으로 학습하여 불량 제품을 분류할 수 있는 비지도 학습 방법으로 이러한 문제점을 해결한다. 이상 탐지(Anomaly Detection) 또는 비지도 학습(Unsupervised Learning, One Class Learning) 으로 불리우며 불량 이미지 확보 및 라벨링을 위한 노력과 시간을 절약할 수 있다.

 

 

이상 탐지(Anomaly Detection)

 

 

대용량 이미지의 경우 시스템 사양에 따라 학습이 불가능한 경우에 이미지를 적은 크기로 만들어 학습할 경우 불량 부위에 대한 정보도 왜곡될 수 있어서 검사 정확도가 떨어지게 된다. 이러한 문제점을 해결하기 위하여 전체 이미지를 일정 크기로 분할하거나 관심 있는 영역만 분리하여 학습 및 검사하는 기능을 지원한다.

또한 동일 산업군 내에서 유사한 제품을 검사할 경우, 기존에 충분한 학습 데이터를 가지고 학습하여 완성된 모델을 학습할 데이터가 부족하지만 비슷한 제품군에 활용하여 학습시간을 줄일 수 있는 전이 학습(Transfer Learning)도 지원한다.

 

MOAI의 구축 사례

 

트윔은 자동차 산업, 식품 산업, 전기 산업, 금속 부품 산업 및 의료/바이오 산업 현장에 MOAI를 기반으로 한 검사장비 및 시스템을 납품하여 그 효과성을 입증하였으며, 주요 사례는 다음과 같다.

금속 부품: 금속 부품의 특성상 난반사 문제를 해결하는 광학시스템과 다양하고 미세한 불량 유형에 대응하는 딥러닝 모델 생성을 통하여 정확하게 불량 위치를 검출하고 유형을 분류한다.

식품 및 건강 제품: 기존 방법으로 검출하지 못했던 다양한 형태의 비정형 불량(실링, 이물, 오염 및 외관) 및 일부인 검사를 기존 비전처리 방식과 딥러닝 방식을 함께 사용하는 솔루션으로 불량 제품을 검출한다.

의료/바이오 분야: 제품 정렬(Alignment)과 함께 제품의 이물, 오염, 스크레치, 파손, 성형 불량 및 찍힘 등의 불량 부위를 검사한다.

 

결론- 똑똑한 머신비전으로 사전 불량검수, 통합자동관리 및 생산성을 향상시킬 수 있어야 진정한 스마트팩토리

 

스마트팩토리에 대한 열풍은 몇 년째 사그라지지 않고 있다. 오히려 지금은 무엇이 스마트팩토리이며, 어떻게 준비하면 되는지 더욱 명확해졌고, 그에 따른 다양한 솔루션도 선보이고 있다. 그러나 제조업에서 대량생산 또는 소비자에 맞춤화한 상품을 신속하게 생산해 내는 것도 중요하지만, 무엇보다 중요한 것은 생산된 제품을 통합자동관리하여 불량을 사전 검수하고, 그 불량의 원인을 해결해 생산성을 높이는 것이다. 그리하여 필요성이 더욱 대두되고 있는 부분이 머신비전을 통한 품질 검수이다. 바로 트윔이 독자 개발한 인공지능 기반의 비전검사 SWMOAI를 사용하면 미검은 없고 과검은 최소화하여 제조 현장에서의 생산 효율 및 검사 품질을 향상할 수 있는 스마트팩토리의 본 목적에 부합하는 해결책이라 할 수 있겠다.

디지털여기에 news@yeogie.com <저작권자 @ 여기에. 무단전재 - 재배포금지>